
1 Robust Database Design

“I believe the hard part of building software to be the specification, design, and
testing of this conceptual construct, not the labor of representing it and testing
the fidelity of the representation.” —Frederick P. Brooks, Jr.

This tutorial will describe concepts behind designing database schemas. It is most appli-
cable to relational databases, but can just as easily be applied to object databases.

Over the course of this tutorial we will build a simple database that might be used in an
online store—to track customer purchases.

2 Why is it so difficult?

Databases organize and store information. However, before they can do that, we, as in
humans, need to provide them with the structure for that information. That is, we, as in
humans, need to figure out the structure ourselves—and this is where we, as in humans, very
often get stuck and/or make lots of wrong decisions.

You must have noticed my emphasis on humans in the last paragraphs. Most humans
have a problem when it comes to organizing their own thoughts! Not to mention organizing
their thoughts on how some abstract information should be organized. As you can imagine,
the process is full of pitfalls (and usually lots of frustration).

In addition to the essential difficulty of using our brains, the database usually stores data
in a rigid format, with rules, and structures, and whatnot. However, the information that’s
in the database comes from the real world, which might not abide by the same rules the
database imposes on it.

It is hard to make a good conceptual design. It is even harder to make that design work
with reality.

3 Where does it all start?

Database design (as well as any sort of design) starts with requirements. We need to know
what we are building, what information we are dealing with, and how we are dealing with
it.

This is not a document on requirements gathering (which is a surprisingly difficult activity
in itself), so we’ll just skip along and assume you know what you’re building and what
information you’re dealing with (and what you need to do with that information). Anyway,
the process of defining the database schema starts with objects.

3.1 Objects

Knowing the information your system will deal with, you can start on the process of iden-
tifying objects. These are similar, but not quite the same objects as in Object Oriented
Programming. These objects are distinct entities that exist by themselves. Usually, if you

1



can touch it, it’s an object. If you can describe something without referring to anything else,
then that’s usually an object too. Objects tend to exist for extended periods of time.

Make a list of any objects you can think of. Be careful not to include things that cannot
exist by themselves.

So, starting with the design of our online store database, a “CUSTOMER” might be an
object; a “PRODUCT” might also be an object. But “PRICE” is not an object, because it
cannot exist by itself—it needs to be a “PRICE” of something (and that something will very
likely be an object).

So a preliminary list of objects for an online store might be:

• CUSTOMER - The person who purchases something.

• PRODUCT - The product a customer might want to buy.

This may be all there is, but as we move along, we might want to add something later
on. Design is a recurring process, and all too often we need to go back and reexamine what
we have and what we don’t have.

One thing to note at this point is that we are not dealing with SQL, or any sort of
implementation details. Once we are happy with the design, implementing it is easy—so
leave off writing SQL until later.

3.2 Events

Now that we have a list of objects we can start figuring out how they interact. What happens
when a customer makes a purchase?

An event is an interaction between one or more objects at a particular time. Events
cannot exist by themselves (otherwise they’d be objects). Events must record the time of
their occurrence—to differentiate themselves from other similar events but at different times.
Of course they can also record other information about the occurrence.

Extending our previous example, in an online store, a “PURCHASE” is an obvious event.
There might be others, and if we think of something, we’ll add it later.

If we are unsure whether something is an object or an event, you can see if it requires a
time-stamp. If something occurs at some time, then it’s very likely an event. This does not
mean that you cannot have a timestamp on an object—objects might have a creation time.

Now that you have a list of all objects and events, let’s move on to properties.

3.3 Properties

Properties are the details or characteristics of our objects and events. A customer objects
might have a “FISTNAME” and “LASTNAME”, just to name a few. Events also have properties:
the time they occurred!

Let us go through our objects and events and add details to them:

2



CUSTOMER

 FIRSTNAME

 LASTNAME

 ADDRESS

 PHONES

PRODUCT

 DESCRIPTION

 PRICE

PURCHASE

 CUSTOMER

 PRODUCTS

 TIMESTAMP

Obviously we can add more details (like product “color”, etc.), but let’s leave it at that
(no need to overcomplicate the example). Notice that PURCHASE has the time of purchase,
and who made the purchase (the CUSTOMER) and what they bought (a bunch of PRODUCTS).

Ok, now that that’s over, here are a few rules: Every object and event must have a unique
ID. Whenever we say a PURCHASE event “has” a CUSTOMER, what we mean is that PURCHASE
has a CUSTOMERID that uniquely identifies a particular customer.

More detailed view of our tables (yep, I said the T word):

CUSTOMER

 CUSTOMERID

 FIRSTNAME

 LASTNAME

 ADDRESS

 PHONES

PRODUCT

 PRODUCTID

 DESCRIPTION

 PRICE

PURCHASE

 PURCHASEID

 CUSTOMER

 PRODUCTS

 TIMESTAMP

That’s more like it. Now it’s clearer that PURCHASE only has an ID of a CUSTOMER and
not the actual CUSTOMER.

3.4 Repeating Properties

What probably bugged you (or should have bugged you) from the previous example is that
we have this “PRODUCTS” property in PURCHASE table. No, we cannot store a number of
products just like that. We need to break that up into separate tables.

The key to the concept is that we introduce a PURCHASE_DETAIL table, which will con-
tain details about individual products. The table would look like this; along with the new
PURCHASE table:

PURCHASE_DETAIL

 PURCHASE_DETAILID

 PURCHASEID

 PRODUCTID

PURCHASE

 PURCHASEID

 CUSTOMERID

 TIMESTAMP

3



Anytime we need to know which products were purchased we just look them up in
PURCHASE_DETAIL table using PURCHASEID of the PURCHASE. Neat, isn’t it?

Now, not all repeating properties deserve such an aggressive treatment. For example,
some can be fixed by simply listing several copies of a particular field. Notice that in our
CUSTOMER table we have PHONES (plural). How can we fix that without introducing another
table? I think you got the idea—we simply list different phones that a CUSTOMER may have:

CUSTOMER

 CUSTOMERID

 FIRSTNAME

 LASTNAME

 ADDRESS

 HPHONE

 WPHONE

 MPHONE

 FPHONE

We simply replace “PHONES” with HPHONE (for Home Phone), WPHONE (for Work Phone),
MPHONE (for Mobile Phone), and FPHONE (for Fax). If a customer doesn’t have one of those,
we just set it to NULL. No big deal. A bit simpler to deal with than with a separate table—
unfortunately we can’t always do that as is illustrated in the PRODUCT_DETAIL example
above.

4 Almost Done!

The above illustrates some basic concepts that you will more than likely encounter on every
project you ever come across. The remainder of this tutorial will illustrate more contrived
(and sometimes very useful) techniques to solving some less than common problems.

4.1 Property Value History

A somewhat rare, but very interesting requirement is the need to maintain the value history
of a particular property. For example, our PRODUCT table has a PRICE. What if a product
goes on sale? Purchases made before the sale must be charged the non-sale price, similarly,
the sale price must be applied to purchases made during a sale.

There are several ways of handling this requirement. We can maintain a copy of the
sale price along with the PURCHASE_DETAIL for that PRODUCT. Then you just change the
PRODUCT.PRICE at will, and have CUSTOMERs purchase at the current prices. This design,
while workable, is a bit too tedious when you need to analyze price histories. In order to
observe price history you need to sift through PURCHASEs.

What if you had a sale for some item, and nobody bought it; how do you know the price
was even lowered? (and by how much?).

4



When faced with such a situation, a good option is to maintain the price of an PRODUCT

along with the PRODUCT. So we setup PRODUCT to look like this:

PRODUCT

 PRODUCTID

 DESCRIPTION

 PRICES

And move on to apply our Repeating Properties technique; which produces:

PRODUCT

 PRODUCTID

 DESCRIPTION

PRICE_HISTORY

 PRICE_HISTORYID

 PRODUCTID

 PRICE

 START_TIME

Notice that in addition to all the Repeating Properties things, we also added “START_TIME”.
This signifies the start of this price. So to find the current price, all we need to do is look
for last PRICE_HISTORY item.

(Note that you can consider a price change as an event that might happen on the PRODUCT,
and in the end, you’ll end up with more or less the same table layout).

4.2 Object Relationships

Another relatively common situation is when objects have relationships to other objects.
Consider a database with people objects—where PERSON objects may have family relations
to other PERSON objects.

These types of relationships are very similar to events—except they are long term. Events
happen at some instant in time, and go away. Object relationships are also formed at some
time (so you might have a start date), and may be destroyed at some future time (so you
might have an end date).

Think of a “MARRIED” or “PARENTOF” relationships, etc.
You also must be careful not to duplicate information. For example, if you define MARRIED

as:

MARRIED

 MARRIEDID

 PERSON1_ID

 PERSON2_ID

 START_DATE

 END_DATE

5



Then when you want to find if “John” is married to “Jane” do you have “John” being
PERSON1_ID, or PERSON2_ID? Do you have a two way relationship—have two entries of
MARRIED, in effect saying Jane is MARRIED to John, and John is MARRIED to Jane). Either
way, you are making tradeoffs. If only one way relationship, then you need application logic
to handle the reverse case.

Another alternative that avoids this issue is to implement these Repeating Properties as
a separate table (as opposed to just listing two PERSONIDs in the MARRIED table). Either
way, you are making tradeoffs (in this case, speed of accessing an extra table).

Tip: A good approach is to go with the cleanest design that avoids data duplication.
During design, don’t worry about the number of tables you have.

Another important thing to realize is that Object-To-Object relationships cannot be
required. An object can exist all by itself! If you find yourself needing required relationships,
then you need to reconsider what you’re treating as an object and what as properties of that
object.

5 Optimization

DON’T START OPTIMIZING UNTIL YOU’RE HAPPY WITH THE DESIGN!

Relational databases are beautifully designed. Your design should work, and be just plain
beautiful (at least to you). Most optimization tends to increase speed but at the expense of
the beauty of design. If you prematurely start optimizing, you’ll just end up with a poorly
designed mess.

Some techniques: adding indexes in appropriate places, reducing number of tables, in-
troducing redundancy (there are a few others, but mostly they all revolve around these
three).

5.1 Adding Indexes

In improving performance, the thing to try first (before you go and break your design) is to
add indexes. These can provide an enormous boost in performance.

(Indexes are special database files that contain column values in sorted order (B-Trees),
allowing you to easily find a record in logarithmic time).

Just consider, how long would it take you to find a name in an unsorted phone book?
Many times, databases are faced with just such a challenge. An index provides a sorted view
of the data making data lookup a fairly trivial disk access (as opposed to looking through
millions of records, the database may only look at a few to find a record).

If your database is sluggish, adding indexes on appropriate fields will more than likely
improve performance.

Now, what are these appropriate fields (or columns)? If at any time you are doing a
search on the value of some field, then you’ve identified a good candidate for an index.

Most primary and foreign keys should also be indexed (and most databases will actually
do that by default). If you ever do searching by dates, then index those too.

Adding an index that you don’t need will not decrease SELECT performance—the speed at
which you retrieve records, but may severely impact INSERT, UPDATE or DELETE performance,

6



because indexes need to be inserted and deleted along with the record. Watch out for these
tradeoffs.

Keeping that in mind, you should not go crazy and add indexes on everything without
thoroughly understanding why you need it there. While indexes increase retrieval perfor-
mance, they also waste space. Indexes can easily occupy 10% to 50% of the total space used
by a database.

Which brings us to another issue: Add indexes on simple integer values (dates, etc.) first.
Avoid indexing character strings—unless you really need them. And, when you do go and
index them, make sure you don’t index the entire string, but some small sized prefix of the
string. Read the database documentation on how to setup such things.

5.2 Reducing Number of Tables

Another approach to improve performance (if indexes don’t help) is reducing number of
tables—or to put it another way: To redesign your database to use less tables (some may
call this step: Refactoring).

This step is extremely dangerous and has very little chance of significantly improving
performance (unless your initial design was horrible). Don’t get it wrong, redesigning things
is very beneficial (you leaned something in the first design iteration - you can improve
things the second time around). However, redesigning with an explicit goal to use fewer
tables is very dangerous, and has more chances of reducing design clarity (and ultimately
performance) than increasing it.

Also remember that reduction at this stage may require additional logic in application
code that uses the database (you’re just shifting the performance burden away from the
database to your clients).

That said (hopefully that was discouraging enough), here are some things to consider
cutting:

Object-To-Object relations, as described above, are implemented via a separate table
(often called a “link” table). If the relationship is many-to-many, then that’s the way to do
it. If the relationship is one-to-many, then you can eliminate the table, and simply have an
ID field in one table.

Farther still, if the relationship is one-to-one, you might be able to absorb one object
into another completely. This is usually the case with Generalization (or Specialization)
relationships.

For example, a database that has ANIMAL and MAMMAL (which is a specialization of ANIMAL)
might merge all MAMMAL fields into ANIMAL table.

Also, if two tables are similar enough, you can merge them into one table: table DOG and
table CAT may be merged into a PET table, which will have all fields of DOG and CAT and a
TYPE field, which will let the application know what we are dealing with.

The possibilities are endless—just remember not to go overboard, and still maintain a
good design.

7



5.3 Data Redundancy

In good design, having redundancy is a big no-no. You should strive to eliminate every little
byte that appears in two or more places. There is a good reason for it too: redundant data
causes inconsistencies! (big problems) No matter how you prepare for it or try to avoid it,
sooner or later, you will get caught.

That being said, sometimes bending the rules a bit provides a fairly big payoff. (it can
also make your good & flexible “more tables than you think you need” design practical).

Redundancy is mostly used as a fast cache of data. Instead of re-computing some function
or rerunning a query (sub-query) you simply grab an already made value. The next point is
so important; it’ll get it its own paragraph:

You must never update the redundant data!

Redundant data should be strictly read only. Updates should occur only on the source
data. Editing source should update redundant data.

Each piece of redundant data must be documented. You must document what is the true
and ultimate source of data—and what is just a copy of it. You never update the copy.

When the true value changes, you simply refresh the redundant fields with the new value
(nice place for stored procedures). You can also do such a refresh via batch processing
(at the end of the day or week). In fact, you should run such a batch process just for good
measure—to ensure that your redundant data is exactly what your source data says it should
be.

Let me repeat (and stress this point): Redundant data must be read-only! Redundant
data must be documented! Procedure for update must be documented! Recovery procedures
must also be documented!

Now, after following all the guidelines, you should still be prepared for inconsistency.
This will happen no matter what (according to Murphy). Someone updates a value, but
still sees the old value on the screen. Make sure that redundant data is not critical, and can
handle being inconsistent for some periods of time.

Good candidates for redundancy are: totals, sums, averages, or any value the database
(or your application) computes from the data already in the database.

As an example, let’s consider our PRODUCT price dilemma. Most of the time we just want
to see the price, but yet we also want to maintain the history of price changes. Previously
we broke up the idea into two tables, saying that one of them will maintain the history
of the PRICE field. That’s all fine, except it takes an extra sub-query (and more complex
application logic) to retrieve the current price.

We might need the price history once a week, but we will probably need the current price
every few minutes. What do we do? Well... We define:

PRODUCT

 PRODUCTID

 DESCRIPTION

 PRICE

PRICE_HISTORY

 PRICE_HISTORYID

 PRODUCTID

 PRICE

 START_TIME

8



Where PRODUCT.PRICE is a redundant field of the latest price derived from finding the
last entry in PRICE_HISTORY table for that PRODUCTID. Now, on an average use, we never
have to even know PRICE_HISTORY table is even there. We deal with PRODUCTs and their
PRICEs.

However, when we need to modify the PRICE, we need to know (and it must be clearly
documented) that we need to add the price to the PRICE_HISTORY table. At that point,
either a batch process, or a stored procedure (or just our application logic) will re-compute
the price for the PRODUCT table.

9


