
1 Loading Data

In a data warehouse environment, there’s often a need to load massive amounts of data,
usually at regular intervals (daily, weekly, monthly, etc.). These notes discuss some of the
options and automation hints.

1.1 INSERT statements

An obvious way to load data is using insert statements. Obviously we can open a connection
to the database, and simply dump many SQL statements into it.

The primarly limitation is usually speed. Every statement takes a certain amount of
overhead to process (in many cases, the database will start a statement level transaction,
etc.). There’s also the cost associated with readin gand parsing the SQL input. Multiply
that overhead many millions of times, and it becomes obvious why for large data loads, we
should avoid SQL.

Another issue is that often, data exists in some funny database unfriendly format, such
as CSV, or fixed width, or in some weird encoding (such as EBCDIC). Some tool is either
used or created to turn that data into database friendly insert statements. An example may
be something as simple as (csv2sql.pl):

while(chomp($_ = <>)){

my @r = split/,/;

print "INSERT INTO $ARGV[0] VALUES (".

join(",", map { "’$_’" } @r).

");\n";

}

With the above style script, you can pipe CSV data in, and get SQL insert statements out.
If for example your data is in xdata.csv.gz file, you can run:

zcat xdata.csv.gz | perl csv2sql.pl table1 > input.sql

If database supports piped in sql (as most do) you can generally just pipe that into the
database directly, ie:

zcat xdata.csv.gz | perl csv2sql.pl table1 | dwsqltool ...

The above approach is slow, but it does work for all databases that claim to be SQL
compatible. Some databases aren’t designed for such inserts though, and it’s not uncommon
to find specialized data warehouse databases that take a long time to process each insert
statement (something on the order of 1 second to do an insert statement—try inserting a
million records like that).

1.2 Database Tools

1.3 MySQL’s mysqlimport & LOAD DATA INFILE

MySQL comes with a command line utility mysqlimport. Internally, this command line
works exactly like the “LOAD DATA INFILE” command, which is available through the
mysql client.

1



The mysqlimport utility takes a huge number of options, specifying among other thing,
the field delimiter, record terminator character, list of columns, etc.

mysqlimport [options] tname filename.csv

The LOAD DATA INFILE is somewhat similar to command line, but works from mysql
client:

LOAD DATA INFILE ’filename.csv’ INTO TABLE tname ...

(you can specify many options, etc.)

1.4 Oracle’s sqlldr

Oracle’s scheme to load data revolves around two files: the control file, and a parameter
file. The control file specifies table name, options, column list, as well as data types and
formats. The parameter file specifies the locations of log, bad, etc., files, as well as database
connectivity information.

A control file looks like this:

LOAD DATA INFILE ’filename.csv’

APPEND

INTO TABLE tname

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’

TRAILING NULLCOLS

( FIELD1 POSITION(1) CHAR TERMINATED BY ",",

FIELD2 CHAR,

FIELD3 DECIMAL EXTERNAL,

FIELD4 INTEGER EXTERNAL,

FIELD5 DATE "YYYYMMDD",

)

A parameter file may look like this:

userid = username/password

control = tname.ctl

log = tname.log

bad = tname.bad

direct = true

silent = (discards, feedback)

errors = 20

You run these things with:

sqlldr parfile=tname.par

2



1.5 PostreSQL copy

From within psql utility, you can run the ‘copy’ command:

COPY tname TO ’filname.csv’ USING DELIMITERS ’,’;

COPY tname FROM ’filename.csv’ USING DELIMITERS ’,’;

1.6 MSSQL bcp (Bulk Copy Program) & BULK INSERT

BCP is command line utility that comes with SQL Server:

BCP dbname..tname IN filename.csv -c -t ’,’ -r \n -U user -P pass

(obviously you’d need to specify login information)

BCP dbname..tname OUT filename.csv -c -t ’,’ -r \n -U user -P pass

BULK INSERT is a query, that is used to tell SQL Server to load data form a file, ie:

BULK INSERT tname FROM ’filename.csv’

WITH (

DATAFILETYPE = ’char’,

FIELDTERMINATOR = ’,’,

ROWTERMINATOR = ’\n’

);

1.7 Netezza nzload

Netezza comes with nzload command line utility. You pipe .csv (or other delimited) data
into the command.

1.8 Fixed width data

Once in a while you might need to work with fixed width data. That’s data usually coming
from old software (like a cobol program outout), etc.

Many bulk database loaders aren’t very flexible when it comes to fixed width data, with
the exception being Oracle’s sqlldr.

If the data volumes aren’t outragious, you might try the Perl approach, and get to enjoy
the ‘pack’ and ‘unpack’ function.

If data volumes are huge, I suggest you write a C/C++ program to do the conversion
(especially if you’re working with diffrent character sets, such as EBCDIC being converted
to ASCII, etc.)

3



1.9 Piped Loads

In data warehouse environments, data files may often be too big to uncompress. Also,
working with uncompressed files puts a lot of strain on the disk IO. By always keeping data
in compressed form, you can offload some of the disk IO over to CPU (which is generally
much faster).

With most databases, you can use a pipe to load data. We can create a ‘pipe’ file:

mknod /tmp/tname.pipe p

We can then specify this pipe object instead of the .csv file in any of the above database
bulk loading tools, such as,

LOAD DATA INFILE ’/tmp/tname.pipe’

APPEND

INTO TABLE tname

Then (in a separate process), you setup a write to the pipe, such as:

zcat myfile.csv.gz > /tmp/tname.pipe

Then you start the database bulk loading tool, and it will happily read from /tmp/tname.pipe

as if it was a plain regular .csv file.

1.10 Parallel Loads

Most databases support parallel loads—which actually does often speed up data load times.
For example, if your load is IO bound, you can load data from different drives. If your load
is CPU bound, you can use multiple processors.

To setup multiple loads, simply start the loads in separate processes. That’s it. Setting
up a Perl script to kick off multiple loads whenever files appear in some directory is usually
best:

# go through all .complete files in upload dir, and

# start a job for each one.

$maxProcs=32;

$numProcs=0;

for my $file (glob "$uploaddir/*.complete"){

$file =~ s/.*?([^\/]+)\.complete$/$1/i;

while($numProcs >= $maxProcs){

$numProcs-- if wait();

if(fork()){

$numProcs++;

}else{

loadFile($file);

exit;

}

}

4



}

1 while(wait() > 0);

exit;

The loadFile($file) would do the obvious thing of invoking a bulk database loading tool
on the filename. the $maxProcs can be adjusted, and should be about the number of CPUs
in your server.

1.11 FTP Thingies

The above section hints at something really neat. Imagine a situation where you manage
a data warehouse, and every night someone deposits (or you need to download) some data
files, and load them into the database.

One approach is to setup an ‘upload’ folder, where everyone dumps their files. The files
would have some identifying name, along with a ‘.complete’ file (the .complete file is tiny
file, used only as a flag that the parent file has finished uploading).

Lets say your upload folder is: /uploads. You have a cron script look through it every
minute, if it finds any .complete files, it loads the data into the database (possibly using the
parallel loader discussed above).

The sending party will first upload:

datafile.20080101.csv.gz

then once this upload is complete, they’ll upload

datafile.20080101.csv.gz.complete

This will ensure that your cron script picks it up and loads it into the database within the
next minute.

As an alternative to the .complete file, you can use the update time. If the file hasn’t
been updated in 5 minutes (rough estimate) then you assume it’s finished uploading, and
you can start loading it. Perl has a very useful ”-M” function that returns the file update
time in days.

1.12 Robust Transfers & Loads

Every file transfer should have some indicator that the file is complete. You should have a
record count on each file somewhere, for example, if datafile.csv has 14382347 recods, all for
20080101 date, have that data be part of the filename, ie:

datafile.20080101.14382347.csv.gz

Now anyone can verify the data simply by doing either

gzip --test

or

zcat datafile.20080101.14382347.csv.gz | wc -l

5



The record count should match the one on the file. If not, this file should be discarded,
re-transmitted, reloaded, etc.

Every operation should be assumed to fail. If it really does fail re-try that operation. For
example, if for whatever reason, the database load filed, restart the load 30 minutes later. If
it fails then, restart it again 30 minutes later, etc., so on and so forth.

Do not rely on exact times to run scripts. ie: having a cron job that runs every night
at 3AM is a very very bad idea. What if your data is late? What if someone is doing
maintenance on something? What if network is down?

Setup your scripts to check for data availability and perform whatever function is needed.
If they cannot peform their function, have them try it again and again and again and again
until they succeed. That way, if someone unplugged your server for the night, or data upload
took an unusually long time, the data ‘job will get done automatically’ as soon as the data
becomes available (and you won’t have to ‘restart’ things manually to ensure it gets done).

1.13 Templates

Bulk database loaders aren’t exactly easy commands to work with. It takes a while to create
the exact set of commands that will work—and then usually these need to be multiplied
by the number of tables you have, and executed every day—with logs going to appropriate
places, etc.

You should automate the job of managing these files to scripts. You should create a gen-
eral purpose template, and then simply pass in different parameters for different databases,
files, etc.

Consider this little Perl script:

my %args;

map {my($a,$b)=split/=/; $args{$a} = $b ? $b:1 } @ARGV;

local $/=undef;

$_ = <>;

s/<\?=(.*?)\?>/$args{$1}/sgi;

print $_;

\end{document}

You can use such a script to provide templating functionality to your database files, ie: your control file can now become:

\begin{verbatim}

LOAD DATA INFILE ’<?=fname?>’

APPEND

INTO TABLE tname_<?=tdate?>

Which you’ll turn into a ‘control file to run today’ by simply piping it through the template
script, ie:

cat tname.ctl_template | perl t.pl tdate=’20080101’ fname=/tmp/tmp.pipe

You can go much farther and implement your own mini-scripting language, ie (s.pl):

{ local $/=undef; $_ = <> }

$_ = "?>$_<?perl";

6



s{<\?=(.*?)\?>}{<?perl print($1); ?>}sgi;

s{\?>(.*?)<\?perl}{

my $a=$1; $a=~s/\\/\\\\/sgi;

$a=~s/’/\\’/sgi; "print ’$a’;\n"}sgie;

eval($_);

And you can write scripts that look eerily similar to PHP, ie (sample.template):

...

<?perl

for my $i (1..4){

?><p>Hello World <?=$i?></p><?perl

}

?>

...

You can run it via:

cat sample.template | s.pl > output.txt

Ie: the whole point of these things being that you can and should automate just about
everything that deals with data.

7


