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1 Introduction

A decision tree is a graphical representation of decision making that is easily interpretable by

humans. Starting from the root, each node applies a test, deciding which of the child branches

to take for subsequent tests. This continues recursively until a leaf node is reached—the label

on the leaf node is the output.

In this scenario, the training (and subsequent input) data are often represented as a set

of tuples (each tuple being a list of attribute values). Given such a tuple, the task is to

predict the target label.

Learning decision trees is done by accepting a set of labeled tuples, and recursively

deciding what test (on which attribute) to apply at each node. The goal is to induce a

decision tree that has good accuracy on the training set, and generalizes well on verification

set.

A related view of decision trees is to consider the volumes decision rules create—the

tree recursively partitions the problem space into disjoint subspaces—with each subspace

representing a particular label.

We can also view a decision tree as a collection of tests. Every path from the root node
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to the leaf represents a list of tests that need to be applied to classify an example with the

leaf label. With this view (treating the tree as a bag of tests as opposed to a hierarchical

tree), it is easier to spot undesirable tests and remove them.

In this paper, we review some key decision tree concepts.

2 Background

Most decision tree learning algorithms are variations on the top-down greedy search algo-

rithm, with the most notable example being ID3 (Interactive Dichotomizer 3) by Quinlan [2].

Quinlan references Hunt’s Concept Learning System (CLS) [1] as inspiration and a precursor

to ID3.

Hunt’s Concept Learning System was a divide and conquer scheme that could handle

binary (positive and negative) target values, with the decision attribute being decided by a

heuristic based on the largest number of positive cases.

ID3 improves on Hunt’s approach by using an information theoretic measure of informa-

tion gain to decide on the test attribute, and allowing for multi-valued target labels.

C4.5, also proposed by Quinlan [3], improves on ID3 with ability to handle numeric

attributes and dealing with missing values. C4.5 also introduced a rule pruning mechanism—

to avoid over-fitting the tree to the training data.

3 ID3

Starting with a set of tuples, ID3 algorithm calculates information gain on every attribute,

and uses the highest information gain attribute to split the dataset. The algorithm then

precedes recursively on each resulting tuple set.

Information gain measures the reduction in entropy of the target attribute minus the
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entropy of the target attribute after the split on A:

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

where Entropy is a measure of bits it takes represent the target attribute and Sv is the set

of tuples resulting from the split on value v of attribute A. The |Sv|/|S| scales the split

entropy by the number of elements in the set after the split on v.

Entropy(X) = −
∑
x∈Ax

P (x) log2 P (x)

The major limitation of ID3 is the inability to calculate information gain for a numeric

attribute. In general, numerical attributes, especially those that function as keys, will have

very high information gain, without any predictive power.

Running ID3 to conclusion (recursively until the entire dataset is exhausted), results in

over fitting the training data. This can be avoided by stopping the algorithm early or later

pruning branches.

3.1 C4.5

The ID3 method is not without problems, and C4.5 is essentially a set of adjustments to the

basic ID3 algorithm to make it work better. For one, the Gain has a tendency of favoring

unique identifiers. If we apply Gain on a database table, it will pick out all the keys, dates,

ids, etc—none of which generalize.

When calculating which value to split on, C4.5 takes the number of distinct values into

consideration. If a node will branch out a million different children, then we generally do
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not want to use that attribute.

Split(S,A) = −
c∑

i=1

|Sv|
|S|

log2

|Si|
|S|

GainRatio(S,A) =
Gain(S,A)

Split(S,A)

Here, S1, ..., Sc are c subsets of examples resulting from partitioning S by c-valued attribute

A.

C4.5 introduces a way of dealing with numerical values. If an attribute A is numeric, it

has N distinct numeric values (the datasets are finite). Such an attribute presents N − 1

potential splits (we can split that attribute at any of the N − 1 values.

To efficiently calculate the information gain for each of the N−1 split points of a numerical

attribute we need to sort the dataset on values of the attribute. Once the numeric attribute

is sorted, it is feasible to calculate information gain using a single iteration over the data.

Missing values are addressed by calculating the ratio of non-missing values within the

split, and weighing the tuple with the missing values according to the ratio of the non-missing

values. For example, if a node is to be split in two, and has 2 negative values, and 3 positive

values, and two missing values, then the two missing values will be weighted as 0.4 negative,

and 0.6 positive.

Another major improvement C4.5 brings is pruning. We start out over-fitting the tree

using ID3 algorithm, and convert the resulting tree into a bag of rules (each path from root to

leaf becomes a conjunction). For each such conjunction, remove attributes if such a removal

does not hurt the rule’s classification performance (using validation tests). Sort the rules by

their estimated accuracy (estimated by applying rule to either training samples or a different

verification set), and apply them in order until a rule fits, and we are able to classify. This

scheme avoids the dangers of over fitting and under fitting.
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