
1 HBase Primer

These class notes continue the Hadoop Primer class notes. So you might want to make sure
that Hadoop is setup correctly before proceeding.

Hadoop (and HDFS) are mostly engineered for batch processing. HBase is a layer that
sits between the client and HDFS (or any reliable data store) that provides real time random
access to ‘big data’.

2 Downloading HBase

Grab the latest version from: http://hadoop.apache.org/
As of this writing, I found: hbase-1.4.3-bin.tar.gz
You can unzip that into your home folder:

tar -xzf ~/Downloads/hbase-1.4.3-bin.tar.gz

This created /home/alex/hbase-1.4.3. Now define a variable HBASE HOME to point to
it. At the top of ~/.bashrc, add:

export HBASE_HOME=/home/alex/hbase-1.4.3

export PATH="$HBASE_HOME/bin:$PATH"

3 Configuring HBase

We need to tell HBASE where to store the data, and keep logs.
This goes into: $HBASE HOME/conf/hbase-site.xml:

<configuration>

<property>

<name>hbase.rootdir</name>

<value>hdfs://localhost/hbase</value>

</property>

<property>

<name>hbase.zookeeper.property.dataDir</name>

<value>/home/alex/hbase-1.4.3/zookeeper</value>

</property>

<property>

<name>hbase.cluster.distributed</name>

<value>true</value>

</property>

</configuration>

The hbase.rootdir tells hbase where to store files. In this case, we’re pointing it to the
local HDFS. You don’t need to create the /hbase directory in HDFS (HBase will do that
automatically).

1

Thje hbase.zookeeper.property.dataDir tells hbase where to maintain Zookeeper
stuff. We need to create that folder:

mkdir -p /home/alex/hbase-1.4.3/zookeeper

Thje hbase.cluster.distributed tells hbase to operate in distributed mode—without
this hbase would operate in a single machine mode (the the hbase.rootdir could be point-
ing to a local directory file:///something.

4 Running Stuff

Need to start Hadoop, so: Go to $HADOOP_HOME/sbin directory, and run:

./start-all.sh

This starts HDFS, etc.
Then go to $HBASE_HOME/bin directory and run:

./start-hbase.sh

Congratulations, you should now have HBase running.

5 Using HBase

Enter hbase shell:

hbase shell

From here, you can run all sorts of commands. For one, you can check the status of
HBase:

hbase(main):005:0> status

1 active master, 0 backup masters, 1 servers, 0 dead, 3.0000 average load

Ok, a bit of architecture. HBase is a key-value store. Mostly. It organizes data into
tables. The “key” (of key-value) is the row-key that identifies a record within the table.

Tables can have one or more column families. Each column family has multiple columns.
The row-key is present in each column family. Each column family is stored on disk separately
(meaning reading things within the same column family is very fast).

With that in mind, if we treat HBase as a quick hash-table, we would first need to define
the structure (table, and column families), then we can put values into indexes that are
composed of table, column family, row-key, and value.

For example, to create a customer table, with two column families, one for customer
details, another for customer orders:

create ’customer’, ’details’, ’orders’

2

To see that it’s there:

> list

TABLE

customer

We can now add data to these key-value stores:

put ’customer’,’1’,’details:fname’,’John’

put ’customer’,’1’,’details:lname’,’Doe’

put ’customer’,’1’,’details:email’,’john.doe@gmail.com’

We can see that it worked:

> scan ’customer’

ROW COLUMN+CELL

1 column=details:email, timestamp=1523907165824, value=john.doe@gmail.com

1 column=details:fname, timestamp=1523907165762, value=John

1 column=details:lname, timestamp=1523907165787, value=Doe

1 row(s) in 0.0130 seconds

We can also retrieve values:

> get ’customer’,’1’,{COLUMN=>’details:email’}

COLUMN CELL

details:email timestamp=1523907165824, value=john.doe@gmail.com

1 row(s) in 0.0230 seconds

If we don’t specify {COLUMN=>’details:email’} it would pull all key-values for that
row-key.

There’s also a delete key:

> delete ’customer’,’1’,’details:email’

0 row(s) in 0.0380 seconds

And there’s also a deleteall to delete all cells for a given row-key.

> deleteall ’customer’,’1’

0 row(s) in 0.0110 seconds

3

