
CIS 45, The Introduction

“I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year.” —The editor in charge of business books for Prentice Hall, 1957

What is a database?

Pretty much anything that stores/organizes data is a ‘database’ in some sense. WordNet1

defines a database as: an organized body of related information.
Thus, the most important detail that we’re concerned with is “organized” or more pre-

cisely, structured data.
For example: a book stores data, a web-page stores data, etc., but they don’t have

well defined structure. Databases (as we use the term) store data according to the defined
metadata—which is the structure of the database.

The difference is that databases are not defined by their data, but by the structure. For
example, a book without text is pointless, but a database with no data is still a database; it
has table structure defined, even though those tables may not contain any data.

What is data?

Well, we’ve defined what is a database. But what exactly are we storing in this database?
As the name implies, we are storing data. Data (by itself) is a set of entities. This is really
a broad definition—anything is an entity. Considering object oriented perspective, you can
also think of entities as objects.

Entities generally have various attributes (also commonly known as properties). These are
what differentiages one entity from another. Attributes have values (a person may have an
‘age’ attribute). Attributes may also reference other entities (a person may have a ‘parent’
attribute that points to another person).

What is information?

Ignoring the dictionary definition, ‘information’ is not a synonym of ‘data’. In fact, you can
have gigabytes of data, yet have no information. Just consider a random sequence.

The whole purpose of databases (and computers in general) is to work with information.
Often times, computers are used to sift through lots of data to extract information. Generally,
data has little or no value. Information on the other hand can be priceless.

1WordNet is a machine-readable lexical database organized by meanings (i.e.: a dictionary); developed
at Princeton University.

1



Broad Field

While we will be mostly concerned with stand-alone databases, many programs have rela-
tively sophisticated data storage and processing capabilities. Just consider how much data a
typical computer game handles—without some organization these things wouldn’t be possi-
ble. So to paraphase a quote I’ve seen once: computer games are just databases with pretty
interfaces.

Tuples

A tuple is structured data—a row in a table. It is something that we stored in a database as
a single ‘record’. Considering the object oriented perspective, these are instances of entity
objects.

Tables

Tables—sometimes known as relations—are basically just lists of tuples. To define a table,
we need: table name, table fields, and a primary key.

Name

The name of the table is quite easy. It it usually a single word name of some entity. For
example Person may be the name of table that has ‘person’ records.

There is a bit of a confusion as to whether table names should be singular or plural. ie:
should you name a table User or Users. It is upto you to decide which way is best.

Fields/Attributes

Every table needs to have one or more fields (also known as attributes). A field needs to
have a name, and more often than not, a type as well.

The name should be picked with great care: it should be relatively descriptive, and
appropriate to the type of information it represents. For example, using FIRSTNAME to
represent ‘first name’.

A field ‘type’ is the data format that the field holds. For example, an INT field type
would hold integer values, while a CHAR field type would host character data.

Fields often have many other parameters, like comments, indicators if the field is a
primary key, default values, valid/invalid values, etc.

Primary Key

A primary key is one or more fields that uniquely identify each individual row (record, tuple,
etc.) in the database.

2



For example, a person’s SS# (social security number) uniquely identifies each individual,
etc.2

Relational Databases

The idea of relational databases isn’t really anything special. It just means that our data is
stored as several tables, which are somehow related to each other. For example, we can have
a table with company information, and another table with employee information. Those two
tables may be related to each other (details to be discussed later) to indicate which employee
works for each company.

Operations on Tables

Once we have tables, what can we do with them? Well, there are five basic operations that
can be performed: select, project, union, difference, and product. The following describes
each one in some detail.

Select

The select operation retrieves data from a table on some condition. For example, we can
imagine a statement that says: “select all persons whose name is John Doe”. Note that this
example is a bit trivialized.

We can use various operations in conditions, for example: “select all persons whose first
name is John and who are 21 or older”.

Project

Projection operation extracts one or more columns from a table. For example, the Person

table may have 20 various fields, but the “project first name and last name from Person
table” only gets us first names and last names.

The result has just as many records as went in; just with possibly fewer columns.
One important concept is that we can combine operations, so for example, we can have

“project first name and last name from (select all persons whose first name is John and who
are 21 or older)”.

Union

Union just combines all records of two tables. For this to work, the two tables must have
the same number of columns (of matching data type).

2As we’ll discuss later, it is usually a very bad idea to use SS# as a primary key.

3



Difference

The difference is similar to a Union, except it has the effect of removing records. For example:
“Table1 - Table2” would result in all records that are in Table1 but are not in Table2.

Product

The product operation (or ×) is a Cartesian product of two tables. For example, if we have
a table A = (a, b, c), and table B = (d, e, f), the product would be:

A×B = {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f)}

Notice that A and B both have 3 elements, and that the product has 9.

Join

While join isn’t exactly a ‘basic’ table operation3 it is useful enough to be considered on its
own.

Join (written ./) is very much like the product operation, except often it doesn’t produce
all possible pairs. When the fields happen to have the same name, the join operation tries
to match on those fields. When the join is only on the equality condition, then it is called a
natural join.

Note that we can also specify our own conditions for join. For example, using A and B
as defined above, the: “A ./ B where both are vowels”, will produce just {(a, e)}.

Structured Query Language

The table operations discussed so far are mostly for abstract thinking about databases.
For every-day database manipulation, most databases have settled on a standard languaged
called SQL, for Structured Query Language.

There are two primary parts to SQL: The DDL and DML.

DDL - Data Definition Language

This is a standard subset of SQL that is used to define tables (database structure), and
other metadata related things. The few basic commands include: CREATE DATABASE, CREATE
TABLE, DROP TABLE, and ALTER TABLE.

There are many other statements, but those are the ones most commonly used.

DML - Data Manipulation Language

This is a standard subset of SQL that is used for data manipulation. Intuitively, we need to
first inset data into the database. Once it’s there, we can retrieve it, modify it, and delete
it. These directly correspond to: INSERT, SELECT, UPDATE, and DELETE statements.

3Join can be defined using the five basic operations defined above.

4



Flavors of SQL

Basically every database implements its own version of SQL. The basic statements (like the
ones listed above) are almost always there and are almost always exactly the same on all
databases.

Extensions come in when you’re trying to do something fancy, like create stored proce-
dures, or work with a specific database environment. Microsoft SQL Server use a variant
called T-SQL, for Transact-SQL. To contract, Oracle uses PL/SQL, for Procedural Language
SQL.

5


