CISC 7700X Midterm Exam 1. c 2. c 3. d, see https://en.wikipedia.org/wiki/Raven_paradox 4. d 5. a 6. e, what would be the deathtoll if nobody was vaccinated? 7. c 8. b 9. b 10. d 11. e, the P(x|y)= P(x,y)/P(y) is how conditional probability is defined. 12. a 13. b 14. a 15. d, P(6s|see4) = P(see4|6s)P(6s) / ( P(see4|6s)P(6s)+P(see4|8s)P(8s)) = 1/6 * 1/2 / ( (1/6*1/2) + (1/8*1/2) ) = 1/12 / ( 1/12 + 1/16 ) = 4/7 16. d 17. b 18. 0.8571 given: P(G) = 0.5, P(-G) = 0.5, P(r&d|G) = 0.6, P(-r&d|G) = 0.4 P(r&d|-G) = 0.1, P(-r&d|-G) = 0.9 Bayes: P(G|r&d) = P(r&d|G)P(G)/P(r&d) = P(r&d|G)P(G) / ( P(r&d|G)P(G) + P(r&d|-G)P(-G) ) = (0.6 * 0.5) / ( 0.6 * 0.5 + 0.1 * 0.5) = 0.8571 19. Not enough information to solve the problem. given: P(rpe|G) = 0.8, P(-rpe|G) = 0.2 P(rpe|-G) = 0.15, P(-rpe|-G) = 0.85 Bayes: P(G|r&d,rpe) = P(r&d,rpe|G)P(G) / P(r&d,rpe) we do not have P(r&d,rpe|G) nor P(r&d,rpe), and they may not be independent. 20. 0.9697 We naively assume P(r&d,rpe|G) = P(r&d|G)*P(rpe|G), we can now solve: P(G|r&d,rpe) = P(r&d,rpe|G)P(G) / P(r&d,rpe) = P(r&d|G)*P(rpe|G)*P(G) / (P(r&d|G)*P(rpe|G)*P(G)+P(r&d|-G)*P(rpe|-G)*P(-G)) = (0.6*0.8*0.5) / (0.6*0.8*0.5+0.1*0.15*0.5) = 0.9697