
Quantization

Alex Sverdlov
alex@theparticle.com

1 Introduction

Often there’s a need to discretize features. For example, converting a real number into a
range of 0 . . . 9.

A quantizer is a function: q(x) that takes a real number and produces an integer output
between 0 and L− 1, where L is the number of quantization levels for a given feature.

The function q(x) can be trained from data samples: often setup such that each quan-
tization level has an equal probability of occuring (this is not required, but is often very
useful).

The feature vector can be quantized as well. For a measurement tuple X = (x1, . . . , xN),
we can define/train a quantizer qi for each feature xi, with Li levels. The quantization Q(X)
is then (q1(x1), . . . , qN(xN)).

The function Q(X) can be trained from data samples: perhaps by allocating appropriate
number of levels per feature based on each feature’s entropy in relation to other features.

The quantized feature vector is a list of integers from 0 to Li − 1. This itself can be
turned into a single number in range 0 to

∏
i Li, essentially quantizatizing the measurement

tuple into a single number, which can be used as an index into a lookup table, etc.

2 Implementation Notes

Given a measurement tuple, X = (x1, . . . , xN), and our desire to quantize it into a number
in 0 . . . Z.

We first need to estimate the relative entropy of each xi: take a sample of the data (or
the entire dataset if not big), and for each feature i calcualte the entropy:

Hi = −
∑

pij log(pij)

Where pij is the probability of jth value of feature i.
This gets us: (H1, . . . , HN), which we normalize (ensure they sum to 1) to get (w1, . . . , wN).

The wi indicates the proportion of entropy that feature i takes up.
Our original goal was to quantize into range 0 . . . Z, so each column gets quantized into

range 0 . . . wi ∗ log(Z), lets call this number Li, or number of levels for feature i.

1

alex@theparticle.com


We can now take a sample (or entire dataset) of feature i, sort it, and cut the sorted list
into Li equally sized slices.

At each of the slice indexes, we take the floor of the value at that index, which for feature
i gets us a list of Li numbers. This is our quatizer data, di.

To build the actual quantizer qi for feature xi we often use the “lower bound” function
(this is binary search to locate the lower bound; google for it). The quatizer is essentially:

lower bound(di, xi)

The above will return an integer in 0 . . . Li range.
Since we know each Li, the tuple (q1(x1), . . . , qN(xN)) can be viewed as an “index” into

an N dimensional array, which is essentially a single offset from the start of the array.
This technique of turning the measurement tuple into an integer can be very powerful,

especially when you consider that we can also subsample the dimensions (we don’t have to
pick all meaurement dimensions, but a small sample: build a lookup table, estimate results
from that table, then take another sample of dimensions, etc.)

2


