
World Wide Web, etc.

Alex S.∗

Raw data-packets wouldn’t be much use to humans if there weren’t many application
level protocols, such as SMTP (for e-mail), HTTP & HTML (for www), etc.

1 The Web

The following discussion applies to CGI, ASP, JSP, Servlets, Web Services, etc. Anything
that works with ‘the web’.

1.1 Introduction

What people call the WWW (World Wide Web) is just a huge collection of web-servers,
which you access via web-clients (or web-browsers).

The process works like this: a person types in some address in the address bar of their
web-browser. The address is in the form of a URL, which has both the hostname and the
resource name (along with the protocol and possibly a port).

(sample URL with port and resource:

http://www.theparticle.com:80/profphreak/profphreak.html

where http is the protocol, www.theparticle.com is the hostname, 80 is the port address
on that host [80 is the default for web-servers] and /profphreak/profphreak.html is the
resource, an html file in our case.)

The web-browser connects to the host, and requests the resource. The server either re-
turns the resource or an error, and user’s web-browser displays whatever the server returned.

Simple? That’s all there is. Well, as far as the simple situation is concerned.
Very often however, we are not just dealing with static resources such as a web page,

but with programs. In that case, the situation works like this: the web-browser requests a
resource, which the web-server determines to be an executable program - in which case, the
server executes the program, and returns the output as “the resource”.

Common Gateway Interface (or CGI for short), defines the environment in which such
programs execute. It defines how these ’web’ programs get their parameters, how their input
and output is processed (how they talk to the web-server), etc.

∗alex@theparticle.com

1



1.2 The Request (technical) 1 THE WEB

CGI is system and language independent, meaning that you can write these web-programs
in any language for any system (yes, even UNIX and Windows, and yes, using Perl).

1.2 The Request (technical)

All client/server interactions start with a client request. In HTTP, a request is a fairly basic
command to the server to fetch some resource. The usual request would look something like
this:

GET /somefile.cgi HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/vnd.ms-excel,

application/vnd.ms-powerpoint, application/msword, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

.NET CLR 1.0.3705)

Host: localhost:8080

Connection: Keep-Alive

This is a request using Microsoft Internet Explorer 6.0 (as you can see from the User-Agent
header variable). The URL used is:

http://localhost:8080/somefile.cgi

Which you can also spot inside the header (the Host has the “host”, and the first GET

line has the resource.
When the web-server gets such a request, it knows what to GET and what types of content

the user’s browser is willing to accept (which includes Microsoft Word documents, among
other things).

The same URL but requested via the Mozilla 1.1 web-browser produces the request:

GET /somefile.cgi HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.1) Gecko/20020826

Accept: text/xml, application/xml, application/xhtml+xml,

text/html;q=0.9, text/plain;q=0.8, video/x-mng, image/png,

image/jpeg, image/gif;q=0.2, text/css, */*;q=0.1

Accept-Language: en-us, en;q=0.50

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

2



1.3 GET, POST, etc. 1 THE WEB

As you can see, even though the requests appear different, they do contain fundamentally
the same information (like Host, and GET line). This is how the server can be platform
independent (and be able to talk to various web-clients).

1.3 GET, POST, etc.

What we’ve seen so far is a GET request. There are about half a dozen different requests which
are standard. Apart from GET, another request types stands out as being very common: the
POST.

The POST request is usually used to send form data to the server. It is also different from
GET in that it has a body. (GET just had the header; all user data has to be crammed into
the few lines of the request header). With POST, we can send a LOT more data (like upload
files), and submit forms with a lot of fields.

To test POST, let’s create an HTML form, and post data to our URL from the previous
section.

<HTML>

<HEAD>

<TITLE>This is a test.</TITLE>

</HEAD>

<BODY>

<H3>Enter Your Info Form</H3>

<FORM ACTION="http://localhost:8080/somefile.cgi"

METHOD="POST">

<P>Name: <INPUT TYPE="TEXT" NAME="USERNAME"><BR>

Age: <INPUT TYPE="TEXT" NAME="AGE"><BR>

<INPUT TYPE="SUBMIT" VALUE="Send Info">

</FORM>

</BODY>

</HTML>

Notice that the FORM has a METHOD="POST" (this is the key part). When we post data
using this form, the request becomes:

POST /somefile.cgi HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, */*

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

.NET CLR 1.0.3705)

3



1.3 GET, POST, etc. 1 THE WEB

Host: localhost:8080

Content-Length: 27

Connection: Keep-Alive

Cache-Control: no-cache

USERNAME=Prof.Phreak&AGE=25

Notice that the request stars with a POST and not a GET and that now we also have a header
argument named Content-Length which has a value of 27.

This 27 represents how much data there is in the body of the request. It is the length of
USERNAME=Prof.Phreak&AGE=25 (this is the body; since the request skips a line right before
it).

Now let’s do the same exact form with a GET:

<HTML>

<HEAD>

<TITLE>This is a test.</TITLE>

</HEAD>

<BODY>

<H3>Enter Your Info Form</H3>

<FORM ACTION="http://localhost:8080/somefile.cgi"

METHOD="GET">

<P>Name: <INPUT TYPE="TEXT" NAME="USERNAME"><BR>

Age: <INPUT TYPE="TEXT" NAME="AGE"><BR>

<INPUT TYPE="SUBMIT" VALUE="Send Info">

</FORM>

</BODY>

</HTML>

Which produces a request to our server:

GET /somefile.cgi?USERNAME=Prof.Phreak&AGE=25 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

.NET CLR 1.0.3705)

Host: localhost:8080

Connection: Keep-Alive

Notice that this request (the GET) has no Content-Length, and no request body. All the
information is encoded as part of the resource:

4



1.4 The Response (technical) 1 THE WEB

/somefile.cgi?USERNAME=Prof.Phreak&AGE=25

So, now we know that if we use GET, our data becomes part of the resource string; and if we
use POST it is appended to the request as the request body (and we are given the length).

1.4 The Response (technical)

The response is a bit simpler than the request; since now we don’t have to worry about
various ways of sending data; there is basically one way, and that’s in the response body.

An OK response to the web-browser from the web-server looks something like this:

HTTP/1.1 200 OK

Date: Fri, 08 Nov 2002 01:31:36 GMT

Server: Apache/2.0.43 (Win32) PHP/4.3.0-pre2

Last-Modified: Fri, 08 Nov 2002 01:21:28 GMT

ETag: "1c5bf-194-d53f0a48"

Accept-Ranges: bytes

Content-Length: 404

Content-Type: text/html; charset=ISO-8859-1

<HTML>

<HEAD>

<TITLE>This is a test.</TITLE>

</HEAD>

<BODY>

<H3>Enter Your Info Form</H3>

<FORM ACTION="http://localhost:8080/somefile.cgi"

METHOD="GET">

<P>Name: <INPUT TYPE="TEXT" NAME="USERNAME"><BR>

Age: <INPUT TYPE="TEXT" NAME="AGE"><BR>

<INPUT TYPE="SUBMIT" VALUE="Send Info">

</FORM>

</BODY>

</HTML>

Notice that there is an HTTP header, followed by a blank line, then followed by the HTTP
body (the content) of the reply. The header has a Content-Length, which tells us exactly
how many types we can read to get the body. (note that the 404 content length is just a
coincidence, it has nothing to do with the 404 error).

An error response would look something like this:

HTTP/1.1 404 Not Found

Date: Tue, 12 Nov 2002 06:25:48 GMT

Server: Apache/2.0.43 (Win32) PHP/4.3.0-pre2

5



1.5 Web Programming 1 THE WEB

Content-Length: 294

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

<title>404 Not Found</title>

</head>

<body>

<h1>Not Found</h1>

<p>The requested URL /somefilewhichisnotthere.html was

not found on this server. </p>

<hr />

<address>Apache/2.0.43 Server at localhost Port 80</address>

</body>

</html>

Yep, this is the famous 404 Page Not Found error (how our browser sees it in raw form).

1.5 Web Programming

Web programming (or programming for the web - however you want to refer to it), is utilizing
the HTTP protocol and the structure we’ve learned about in these notes.

CGI allows us to define our own recipients of these HTTP messages. We can have our
own script that would accept form parameters, process them, and just as easily return results
in a form that a browser can understand.

6


