
1 Introduction to Java

Java, the programming language, was developed by Sun MicrosystemsTM and released to
the world in 1995. It almost instantly became popular, primarily because it was an object
oriented language that was similar in syntax (same if statements, etc.) to C/C++, had
garbage collection (you didn’t have to explicitly free memory), was portable, and had a very
impressive standard library. In other words, it (arguably) made programming much easier
than in C/C++.

In this introduction, we assume that you know some other programming language already,
so the focus is on getting you up and running with Java, not on explaining basic programming
concepts.

1.1 The “Hello World” program

Every new programming language book begins with the “Hello World” program. Here it is:

Listing 1: First Hello World program.

/∗
∗ He l l o World program .
∗/

public class HelloWorld {
public stat ic void main (St r ing [] a rgs){

System . out . p r i n t l n (” He l lo World ! ”) ;
}

}

Hopefully this program is self explanatory. The way you compile this program is by using
the javac tool that comes with the JDK (ie: Java SDK). You can get the JDK from Sun’s
website, java.sun.com

You compile the above program, from command line, with:

javac HelloWorld.java

After compiling, you’ll have HelloWorld.class file. This is the compiled output (it contains
bytecode). You run it (HelloWorld.class file) via:

java HelloWorld

Hello World!

Note that we compiled and ran the program from command line. While learning, it is highly
recommended that you use the basic command line. Learning isn’t work—productivity and
ease are virtues of the work environment. While learning, do not take the easy road—
otherwise you’ll only learn the easy way.

1.2 Variables

Variables are the key to any program. There are variables called registers inside every CPU
(Central Processing Unit). Every program ever written uses some form of variables. This

1

section is a very simple introduction to what variables are, and how they’re used in Java
programs.

Usually, a variable implies a memory location to hold one instance of one specific type.
What this means is that if there is an integer variable, it can only hold one integer, and if
there is a character variable, it can only hold one character.

There can be many different types of variables, including of your own type. A sample
declaration for different variable types is given below.

boolean t ;
byte b ;
char c ;
int i ;
long l ;

The above seems straight forward, and therefore doesn’t need much explanation. Variable t
is declared as boolean type (ie: true or false), and b as of byte type (integer from 0 to 255),
etc.

The above variables are what’s know as ‘primitive types’. Primitive types in Java means
that you don’t have to create them, they’re already available as soon as you declare them.
(you’ll see what this means when we deal with Objects) It also means that there is usually
some hardware equivalent to these variables. For example, an int type, can be stored in a
32 bit hardware register.

The other types of variables are instances of classes, or Objects. Java is an Object
Oriented language, and everything in it is an object. An object is an instance of a class.
Your Java programs consist of classes, in which you manipulate objects, and make the whole
program do what you want. This concept will be familiar to you if you’ve programmed in
C++, if not, think of objects as structures. An example of a simple class would be:

Listing 2: A very simple object.

public class pSimpleObject{
int i ;
public pSimpleObject (){

i = 0 ;
}
public int get (){

return i ;
}
public void s e t (int n){

i = n ;
}

}

As you can see, first we specify that the class is public, this means that it can be visible
to other objects outside its file. We later say that it’s a class, and give its name, which in
this case is: pSimpleObject. Inside of it, the class contains an integer named i, and three
functions. The first function named pSimpleObject(), is the constructor. It is called every
time an object is created using this class. The set () and get() functions set and get the
value of i respectively. One useful terminology is that functions in objects are not called

2

‘functions’, they’re called methods. So, to refer to function set (), you’d say “method set ().”
That’s all there is to objects!

The way you declare a variable, or in this case, an object of that class, is:

pSimpleObject myObject ;
myObject = new pSimpleObject () ;

or

pSimpleObject myObject = new pSimpleObject () ;

The first example illustrates how you declare an object named myObject, of class pSimpleObject,
and later instantiate it (a process of actual creation, where it calls the object’s constructor
method). The second approach illustrates that this can be done in one line. The object does
not get created when you just declare it, it’s only created when you do a new on it.

If you’re familiar with C/C++, think of objects as pointers. First, you declare it, and
then you allocate a new object to that pointer. The only limitation seems to be that you
can’t do math on these pointers, other than that, they behave as plain and simple C/C++
pointers. (You might want to think of objects as references however.)

1.3 Arrays

One of the most basic data structures, is an array. An array is just a number of items,
of same type, stored in linear order, one after another. Arrays have a set limit on their
size, they can’t grow beyond that limit. Arrays usually tend to be easier to work with and
generally more efficient than other structural approaches to organizing data.

For example, lets say you wanted to have 100 numbers. You can always resort to having
100 different variables, but that would be a pain. Instead, you can use the clean notation
of an array to create, and later manipulate those 100 numbers. For example, to create an
array to hold 100 numbers you would do something like this:

int [] myArray ;
myArray = new int [1 0 0] ;

or

int [] myArray = new int [1 0 0] ;

or

int myArray [] = new int [1 0 0] ;

The three notations above do exactly the same thing. The first declares an array, and
then it creates an array by doing a new. The second example shows that it can all be one
in one line. And the third example shows that Java holds the backwards compatibility with
C++, where the array declaration is: int myArray[]; instead of int [] myArray;. To us, these
notations are exactly the same. I do however prefer to use the Java one.

Working with arrays is also simple, think of them as just a line of variables, we can
address the 5th element (counting from 0, so, it’s actually the 6th element) by simply doing:

int i = myArray [5] ;

3

The code above will set integer i to the value of the 5th (counting from 0) element of the
array. Similarly, we can set an array value. For example, to set the 50th element (counting
from 0), to the value of i we’d do something like:

myArray [5 0] = i ;

As you can see, arrays are fairly simple. The most convenient way to manipulate arrays is
using loops. For example, lets say we wanted to make an array of 100 elements hold numbers
from 1 to 100 respectively, and later add seven to every element inside that array (ignore
our reasons for it). This can be done very easily using two loops. (actually, it can be done
in one loop, but I am trying to separate the problem into two)

int i ;
for (i =0; i <100; i++)

myArray [i] = i ;
for (i =0; i <100; i++)

myArray [i] = myArray [i] + 7 ;

In Java, we don’t need to remember the size of the array as in C/C++. Here, we have
the length variable in every array, and we can check its length whenever we need it. So to
print out any array named: myArray, we’d do something like:

for (int i = 0 ; i<myArray . l ength ; i++)
System . out . p r i n t l n (myArray [i]) ;

This will work, given the objects inside the myArray\lstinline are printable, (have a cor-
responding toString() method), or are of primitive type.

One of the major limitations on arrays is that they’re fixed in size. They can’t grow
or shrink according to need. If you have an array of 100 max elements, it will not be able
to store 101 elements. Similarly, if you have less elements, then the unused space is being
wasted (doing nothing).

Java API provides data storage classes, which implement an array for their storage. As
an example, take the java. util .Vector class, it can grow, shrink, and do some quite useful
things. The way it does it is by reallocating a new array every time you want to do some of
these operations, and later copying the old array into the new array. It can be quite fast for
small sizes, but when you’re talking about several megabyte arrays, and every time you’d
like to add one more number (or object) you might need to reallocate the entire array; that
can get quite slow. Later, we will look at other data structures where we won’t be overly
concerned with the amount of the data and how often we need to resize.

Even in simplest situations, arrays are powerful storage constructs.

1.4 Array Stack

The next and more serious data structure we’ll examine is the Stack. A stack is a FILO
(First In, Last Out), structure. For now, we’ll just deal with the array representation of the
stack. Knowing that we’ll be using an array, we automatically think of the fact that our
stack has to have a maximum size.

A stack has only one point where data enters or leaves. We can’t insert or remove
elements into or from the middle of the stack. As mentioned before, everything in Java is
an object, (ie: it’s an Object Oriented language), so, lets write a stack object!

4

Listing 3: Simple array based integer stack.

/∗
∗ s imple array based i n t e g e r s t a c k
∗/

public class pArrayStackInt {
protected int head [] ;
protected int po in t e r ;

public pArrayStackInt (int capac i ty){
head = new int [capac i ty] ;
po in t e r = −1;

}
public boolean isEmpty (){

return po in t e r == −1;
}
public void push (int i){

i f (po in t e r+1 < head . l ength)
head[++po in t e r] = i ;

}
public int pop (){

i f (isEmpty ())
return 0 ;

return head [po inter −−];
}

}

As you can see, that’s the stack class. The constructor named pArrayStackInt() accepts
an integer. That integer is to initialize the stack to that specific size. If you later try to
push() more integers onto the stack than this capacity, it won’t work. Nothing is complete
without testing, so, lets write a test driver class to test this stack.

Listing 4: Test class for pArrayStackInt.

/∗
∗ c l a s s to t e s t pArrayStackInt c l a s s .
∗/

class pArrayStackIntTest {
public stat ic void main (St r ing [] a rgs){

pArrayStackInt s = new pArrayStackInt (1 0) ;
int i , j ;
System . out . p r i n t l n (” s t a r t i n g . . . ”) ;
for (i =0; i <10; i++){

j = (int) (Math . random () ∗ 100) ;
s . push (j) ;
System . out . p r i n t l n (”push : ” + j) ;

}
while (! s . isEmpty ()){

System . out . p r i n t l n (”pop : ” + s . pop ()) ;
}

5

System . out . p r i n t l n (”Done ;−)”) ;
}

}

The test driver does nothing special, it inserts ten random numbers onto the stack, and
then pops them off. Writing to standard output exactly what it’s doing. The output gotten
from this program is:

s t a r t i n g . . .
push : 33
push : 66
push : 10
push : 94
push : 67
push : 79
push : 48
push : 7
push : 79
push : 32
pop : 32
pop : 79
pop : 7
pop : 48
pop : 79
pop : 67
pop : 94
pop : 10
pop : 66
pop : 33
Done ;−)

As you can see, the first numbers to be pushed on, are the last ones to be popped off. A
perfect example of a FILO structure. The output also assures us that the stack is working
properly.

Now that you’ve had a chance to look at the source, lets look at it more closely.
The pArrayStackInt class is using an array to store it’s data. The data is int type (for

simplicity). There is a head data member, that’s the actual array. Because we’re using an
array, with limited size, we need to keep track of it’s size, so that we don’t overflow it; we
always look at head.length to check for maximum size.

The second data member is pointer. Pointer, in here, points to the top of the stack. It
always has the position which had the last insertion, or -1 if the stack is empty.

The constructor: pArrayStackInt(), accepts the maximum size parameter to set the size
of the stack. The rest of the functions is just routine initialization. Notice that pointer is
initialized to -1, this makes the next position to be filled in an array, 0.

The isEmpty() function is self explanatory, it returns true if the stack is empty (pointer
is -1), and false otherwise. The return type is boolean.

The push(int) function is fairly easy to understand too. First, it checks to see if the next
insertion will not overflow the array. If no danger from overflow, then it inserts. It first

6

increments the pointer and then inserts into the new location pointed to by the updated
pointer. It could easily be modified to actually make the array grow, but then the whole
point of “simplicity” of using an array will be lost.

The int pop() function is also very simple. First, it checks to see if stack is not empty, if
it is empty, it will return 0. In general, this is a really bad error to pop of something from
an empty stack. You may want to do something more sensible than simply returning a 0 (an
exception throw would not be a bad choice). Then, it returns the value of the array element
currently pointed to by pointer, and it decrements the pointer. This way, it is ready for the
next push or pop.

I guess that just about covers it. Stack is very simple and is very basic. There are tons of
useful algorithms which take advantage of this FILO structure. Now, lets look at alternative
implementations.

Given the above, a lot of the C++ people would look at me strangely, and say: “All
this trouble for a stack that can only store integers?” Well, they’re probably right for the
example above. It is too much trouble. The trick I’ll illustrate next is what makes Java my
favorite Object Oriented language.

In C, we have the void∗ type, to make it possible to store “generic” data. In C++, we
also have the void∗ type, but there, we have very useful templates. Templates is a C++
way to make generic objects, (objects that can be used with any type). This makes quite a
lot of sense for a data storage class; why should we care what we’re storing?

The way Java implements these kinds of generic classes is by the use of parent classes. In
Java, every object is a descendant of the Object class. So, we can just use the Object class in
all of our structures, and later cast it to an appropriate type. Next, we’ll write an example
that uses this technique inside a generic stack.

Listing 5: Simple object based stack.

/∗
∗ s imple o b j e c t based s t a c k
∗/

public class pArrayStackObject{
protected Object head [] ;
protected int po in t e r ;

public pArrayStackObject (int capac i ty){
head = new Object [capac i ty] ;
po in t e r = −1;

}
public boolean isEmpty (){

return po in t e r == −1;
}
public void push (Object i){

i f (po in t e r+1 < head . l ength)
head[++po in t e r] = i ;

}
public Object pop (){

i f (isEmpty ())

7

return null ;
return head [po inter −−];

}
}

The above is very similar to the int only version, the only things that changed are the
int to Object. This stack, allows the push() and pop() of any Object. Lets convert our
old test driver to accommodate this new stack. The new test module will be inserting
java.lang. Integer objects (not int; not primitive type).

Listing 6: Test driver for object based stack.

/∗
∗ t e s t d r i v e r c l a s s f o r o b j e c t s t a c k .
∗/

class pArrayStackObjectTest {
public stat ic void main (St r ing [] a rgs){

pArrayStackObject s = new pArrayStackObject (1 0) ;
I n t eg e r j = null ;
int i ;
System . out . p r i n t l n (” s t a r t i n g . . . ”) ;
for (i =0; i <10; i++){

j = new I n t eg e r ((int) (Math . random () ∗ 100)) ;
s . push (j) ;
System . out . p r i n t l n (”push : ” + j) ;

}
while (! s . isEmpty ()){

System . out . p r i n t l n (”pop : ” + ((In t eg e r) s . pop ())) ;
}
System . out . p r i n t l n (”Done ;−)”) ;

}
}

And for the sake of being complete, we’ll include the output. Notice that here, we’re
not inserting elements of int type, we’re inserting elements of java.lang. Integer type. This
means, that we can insert any Object.

s t a r t i n g . . .
push : 45
push : 7
push : 33
push : 95
push : 28
push : 98
push : 87
push : 99
push : 66
push : 40
pop : 40
pop : 66

8

pop : 99
pop : 87
pop : 98
pop : 28
pop : 95
pop : 33
pop : 7
pop : 45
Done ;−)

That just about covers stacks. The main idea you should learn from this section is that a
stack is a FILO data structure. After this section, non of the data structures will be working
with primitive types, and everything will be done solely with objects. (now that you know
how it’s done...)

And now, onto the array relative of Stack, the Queue.

1.5 Array Queues

A queue is a FIFO (First In, First Out) structure. Anything that’s inserted first, will be the
first to leave (kind of like the real world queues.) This is totally the opposite of what a stack
is. Although that is true, the queue implementation is quite similar to the stack one. It also
involves pointers to specific places inside the array.

With a queue, we need to maintain two pointers, the start and the end. We’ll determine
when the queue is empty if start and end point to the same element. To determine if the
queue is full (since it’s an array), we’ll have a boolean variable named full . To insert, we’ll
add one to the start, and mod (the %, mod operator) with the size of the array. To remove,
we’ll add one to the end, and mod (the %, mod operator) with the size of the array. Simple?
Well, lets write it.

Listing 7: Array based queue.

/∗
∗ array based queue .
∗/

public class pArrayQueue{
protected Object [] array ;
protected int s t a r t , end ;
protected boolean f u l l ;

public pArrayQueue (int maxsize){
array = new Object [maxsize] ;
s t a r t = end = 0 ;
f u l l = fa l se ;

}

public boolean isEmpty (){
return ((s t a r t == end) && ! f u l l) ;

}

9

public void i n s e r t (Object o){
i f (! f u l l)

array [s t a r t = (++s t a r t % array . l ength)] = o ;
i f (s t a r t == end)

f u l l = true ;
}

public Object remove (){
i f (f u l l)

f u l l = fa l se ;
else i f (isEmpty ())

return null ;
return array [end = (++end % array . l ength)] ;

}
}

That’s the queue class. In it, we have four variables, the array, the start and end, and a
boolean full. The constructor pArrayQueue(int maxsize) initializes the queue, and allocates
an array for data storage. The isEmpty() method is self explanatory, it checks to see if start
and end are equal; this can only be in two situations: when the queue is empty, and when
the queue is full. It later checks the full variable and returns whether this queue is empty or
not.

The insert (Object) method, accepts an Object as a parameter, checks whether the queue
is not full, and inserts it. The insert works by adding one to start , and doing a mod with
array.length (the size of the array), the resulting location is set to the incoming object. We
later check to see if this insertion caused the queue to become full, if yes, we note this by
setting the full variable to true.

The Object remove() method, doesn’t accept any parameters, and returns an Object. It
first checks to see if the queue is full, if it is, it sets full to false (since it will not be full
after this removal). If it’s not full, it checks if the queue is empty, by calling isEmpty(). If it
is, the method returns a null, indicating that there’s been an error. This is usually a pretty
bad bug inside a program, for it to try to remove something from an empty queue, so, you
might want to do something more drastic in such a situation (like an exception throw). The
method continues by removing the end object from the queue. The removal is done in the
same way insertion was done. By adding one to the end, and later mod it with array.length
(array size), and that position is returned.

There are other implementations of the same thing, a little re-arrangement can make
several if (...) statements disappear. The reason it’s like this is because it’s pretty easy to
think of it. Upon insertion, you add one to start and mod, and upon removal, you add one
to end and mod. Easy?

Now that we know how it works, lets actually test it, with modified test driver from the
stack example, so, here it comes:

Listing 8: Test driver for array based queue.

/∗
∗ t e s t d r i v e r f o r pArrayQueue

10

∗/
class pArrayQueueTest{

public stat ic void main (St r ing [] a rgs){
pArrayQueue q = new pArrayQueue (1 0) ;
I n t eg e r j = null ;
int i ;
System . out . p r i n t l n (” s t a r t i n g . . . ”) ;
for (i =0; i <10; i++){

j = new I n t eg e r ((int) (Math . random () ∗ 100)) ;
q . i n s e r t (j) ;
System . out . p r i n t l n (” i n s e r t : ” + j) ;

}
while (! q . isEmpty ()){

System . out . p r i n t l n (”remove : ” + ((In t eg e r) q . remove ())) ;
}
System . out . p r i n t l n (”Done ;−)”) ;

}
}

As you can see, it inserts ten random java.lang. Integer Objects onto the queue, and later
prints them out. The output from the program follows:

s t a r t i n g . . .
i n s e r t : 3
i n s e r t : 70
i n s e r t : 5
i n s e r t : 17
i n s e r t : 26
i n s e r t : 79
i n s e r t : 12
i n s e r t : 44
i n s e r t : 25
i n s e r t : 27
remove : 3
remove : 70
remove : 5
remove : 17
remove : 26
remove : 79
remove : 12
remove : 44
remove : 25
remove : 27
Done ;−)

Compare this output to the one from stack. It’s almost completely different.That’s it for
this array implementation of this FIFO data structure.

11

1.6 Array Lists

The next step up in complexity is a list. Most folks prefer to think of a list as a linked list
(and we’ll go over that later), but what most people miss, is that lists can also be efficiently
implemented using arrays. An abstract list has no particular structure; it just has to allow
for the insertion and removal of objects from both ends, and some way of looking at the
middle elements.Technically, this is a ‘deque’ data structure.

A list is kind of a stack combined with a queue; with additional feature of looking at
the middle elements. Preferably, a list should also contain the current number of elements.
Well, lets not just talk about a list, but write one!

Listing 9: Array based list.

/∗
∗ array based l i s t
∗/

public class pArrayList {
protected Object [] array ;
protected int s t a r t , end , number ;

public pArrayList (int maxsize){
array = new Object [maxsize] ;
s t a r t = end = number = 0 ;

}
public boolean isEmpty (){

return number == 0 ;
}
public boolean i s F u l l (){

return number >= array . l ength ;
}
public int s i z e (){

return number ;
}
public void i n s e r t (Object o){

i f (number < array . l ength){
array [s t a r t = (++s t a r t % array . l ength)] = o ;
number++;

}
}
public void insertEnd (Object o){

i f (number < array . l ength){
array [end] = o ;
end = (−−end + array . l ength) % array . l ength ;
number++;

}
}
public Object remove (){

i f (isEmpty ())
return null ;

12

number−−;
int i = s t a r t ;
s t a r t = (−− s t a r t + array . l ength) % array . l ength ;
return array [i] ;

}
public Object removeEnd (){

i f (isEmpty ())
return null ;

number−−;
return array [end = (++end % array . l ength)] ;

}
public Object peek (int n){

i f (n >= number)
return null ;

return array [(end + 1 + n) % array . l ength] ;
}

}

The class contains four data elements: array, start , end, and number. The number is the
number of elements inside the array. The start is the starting pointer, and the end is the
ending pointer inside the array (kind of like the queue design).

The constructor, pArrayList(), and methods isEmpty(), isFull (), and size (), are pretty
much self explanatory. The insert () method works exactly the same way as an equivalent
queue method. It just increments the start pointer, does a mod (the % symbol), and inserts
into the resulting position.

The insertEnd(Object) method, first checks that there is enough space inside the array.
It then inserts the element into the end location. The next trick is to decrement the end
pointer, add the array.length, and do a mod with array.length. This had the affect of moving
the end pointer backwards (as if we had inserted something at the end).

The Object remove() method works on a very similar principle. First, it checks to see if
there are elements to remove, if not, it simply returns a null (no Object). It then decrements
number. We’re keeping track of this number inside all insertion and removal methods, so
that it always contains the current number of elements. We then create a temporary variable
to hold the current position of the start pointer. After that, we update the start pointer
by first decrementing it, adding array.length to it, and doing a mod with array.length. This
gives the appearance of removing an element from the front of the list. We later return the
position inside the array, which we’ve saved earlier inside that temporary variable i.

The Object removeEnd() works similar to the insert () method. It checks to see if there
are elements to remove by calling isEmpty() method, if there aren’t, it returns null. It then
handles the number (number of elements) business, and proceeds with updating the end
pointer. It first increments the end pointer, and then does a mod with array.length, and
returns the resulting position. Simple?

This next Object peek(int n) method is the most tricky one. It accepts an integer, and
we need to return the number which this integer is pointing to. This would be no problem if
we were using an array that started at 0, but we’re using our own implementation, and the
list doesn’t necessarily start at array position 0. We start this by checking if the parameter

13

n is not greater than the number of elements, if it is, we return null (since we don’t want to
go past the bounds of the array). What we do next is add n (the requested number) to an
incremented end pointer, and do a mod array.length. This way, it appears as if this function
is referencing the array from 0 (while the actual start is the incremented end pointer).

Note that the above is a bit confusing, since the start and end of the list seem to be
reversed (ie: we’re counting elements from end).

As was said earlier, the code you write is useless, unless it’s working, so, lets write a test
driver to test the list class. For the test driver, we convert the Queue test code (while adding
some new checks):

Listing 10: Test code for array based list.

class pArrayListTest {
public stat ic void main (St r ing [] a rgs){

pArrayList l = new pArrayList (1 0) ;
I n t eg e r j = null ;
int i ;
System . out . p r i n t l n (” s t a r t i n g . . . ”) ;
for (i =0; i <5; i++){

j = new I n t eg e r ((int) (Math . random () ∗ 100)) ;
l . i n s e r t (j) ;
System . out . p r i n t l n (” i n s e r t : ” + j) ;

}
while (! l . i s F u l l ()){

j = new I n t eg e r ((int) (Math . random () ∗ 100)) ;
l . insertEnd (j) ;
System . out . p r i n t l n (” insertEnd : ” + j) ;

}
for (i =0; i<l . s i z e () ; i++)

System . out . p r i n t l n (”peek ”+i+” : ”+l . peek (i)) ;
for (i =0; i <5; i++)

System . out . p r i n t l n (”remove : ” + ((In t eg e r) l . remove ())) ;
while (! l . isEmpty ())

System . out . p r i n t l n (”removeEnd : ” + ((In t eg e r) l . removeEnd ())) ;
System . out . p r i n t l n (”Done ;−)”) ;

}
}

The test driver is nothing special, it inserts (in front) five random numbers, and the rest
into the back (also five). It then prints out the entire list by calling peek() inside a for loop.
It then continues with the removal (from front) of five numbers, and later removing the rest
(also five). At the end, the program prints ”Done” with a cute smiley face ;-)

The output from this test driver is given below. You should examine it thoroughly, and
make sure you understand what’s going on inside this data structure.

s t a r t i n g . . .
i n s e r t : 14
i n s e r t : 72
i n s e r t : 71

14

i n s e r t : 11
i n s e r t : 27
insertEnd : 28
insertEnd : 67
insertEnd : 36
insertEnd : 19
insertEnd : 45
peek 0 : 45
peek 1 : 19
peek 2 : 36
peek 3 : 67
peek 4 : 28
peek 5 : 14
peek 6 : 72
peek 7 : 71
peek 8 : 11
peek 9 : 27
remove : 27
remove : 11
remove : 71
remove : 72
remove : 14
removeEnd : 45
removeEnd : 19
removeEnd : 36
removeEnd : 67
removeEnd : 28
Done ;−)

If you really understand everything up to this point, there is nothing new anybody can
teach you about arrays (since you know all the basics). There are however public tools
available to simplify your life. Some are good, some are bad, but one that definitely deserves
to have a look at is the java. util .Vector class; and that’s what the next section is about!

1.7 The Vector

The java. util .Vector class is provided by the Java API, and is one of the most useful array
based data storage classes you’ll encounter in the Java API. Conceptually, a ‘vector’, is a
growing array; as more and more elements are added onto it, the array grows. There is also
a possibility of making the array smaller.

But wait a minute, all this time we’ve been led to believe that arrays can’t grow or shrink,
and it seems Java API has done it. Not quite. The java. util .Vector class doesn’t exactly
‘grow’, or ‘shrink’. When it needs to do these operations, it simply allocates a new array (of
appropriate size), and copies the contents of the old array into the new array. Thus, giving
the impression that the array has changed size. Don’t you just love encapsulation?

All these memory operations can get quite expensive if a Vector is used in a wrong way.
Since a Vector has a similar architecture to the array stack we’ve designed earlier, the best

15

and fastest way to use a Vector is to do stack operations. Usually, in programs, we need a
general data storage class, and don’t really care about the order in which things are stored
or retrieved; that’s where java. util .Vector comes in very useful.

Using a Vector to simulate a queue is very expensive, since every time you insert or
remove, the entire array has to be copied (not necessarily reallocated but still involves lots
of useless work).

Vector allows us to view its insides using an Enumerator; a class to go through objects. A
sample program that uses java. util .Vector for its storage follows.

Listing 11: Test code for java.util.Vector

import java . u t i l . ∗ ;

class pVectorTest{
public stat ic void main (St r ing [] a rgs){

Vector v = new Vector (1 5) ;
I n t eg e r j = null ;
int i ;
System . out . p r i n t l n (” s t a r t i n g . . . ”) ;
for (i =0; i <10; i++){

j = new I n t eg e r ((int) (Math . random () ∗ 100)) ;
v . addElement (j) ;
System . out . p r i n t l n (”addElement : ” + j) ;

}
System . out . p r i n t l n (” s i z e : ”+v . s i z e ()) ;
System . out . p r i n t l n (” capac i ty : ”+v . capac i ty ()) ;

Enumeration e = v . e lements () ;
while (e . hasMoreElements ())

System . out . p r i n t l n (”e : ”+(In t eg e r) e . nextElement ()) ;

System . out . p r i n t l n (”Done ;−)”) ;
}

}

The example above should be self explanatory (if you paid attention during test programs
for the previous data structures). The main key difference is that this one doesn’t actually
remove objects at the end; we just leave them inside. Removal can be accomplished very
easily, and if you’ll be doing anything cool with the class, you’ll sure to look up the API
specs.

Printing is accomplished using an Enumerator; which we use to march through every
element printing as we move along. We could also have done the same by doing a for loop,
going from 0 to v. size (), doing a v.elementAt(int) every time through the loop. The output
from the above program follows:

s t a r t i n g . . .
addElement : 6
addElement : 39
addElement : 74

16

addElement : 66
addElement : 13
addElement : 17
addElement : 42
addElement : 77
addElement : 49
addElement : 52
s i z e : 10
capac i ty : 15
e : 6
e : 39
e : 74
e : 66
e : 13
e : 17
e : 42
e : 77
e : 49
e : 52
Done ;−)

You should notice that when we print the size and capacity, they’re different. The size is
the current number of elements inside the Vector, and the capacity, is the maximum possible
without reallocation.

A trick you can try yourself when playing with the Vector is to have Vectors of Vectors
(since Vector is also an Object, there shouldn’t be any problems of doing it). Constructs
like that can lead to some interesting data structures, and even more confusion. Just try
inserting a Vector into a Vector ;-)

That covers the Vector class. If you need to know more about it, you’re welcome to read
the API specs for it. You’re also encouraged to look at java. util .Vector source code, and see
for yourself what’s going on inside that incredibly simple structure.

17

